If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1-16y^2=0
a = -16; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-16)·1
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*-16}=\frac{-8}{-32} =1/4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*-16}=\frac{8}{-32} =-1/4 $
| 8(2x+1)=-8 | | (25+5n)=(15+4n) | | 20-4x^2=0 | | 2.5x^2=0 | | d÷6=-2 | | -(x2)/(5)+15=0 | | (n+3)(n+2)=5 | | 6r+8=40 | | P(x)=-3x2+5x-2 | | a=5+ | | d÷6=3 | | 8(a-4)=(a+5) | | (4x-6)(x-4)=120 | | (4x)*x=144 | | y^2-2√3y+1=0 | | X+7=5x/4 | | y*(26-y)=676 | | 6x24=x2 | | 3x^2+60x-10000=0 | | n²+9n-500=0 | | 1.5/n=3.5 | | 25x32=800 | | 1/36=6^x-3 | | 15y-50-2y=-24 | | |15-x|=(x^2-225) | | x2=2x/5=9 | | 3x5x-7-4x=4 | | |15-x|=x^2-225 | | p=1+12 | | 3(x=1)2(x=3)4(2x=1)=109 | | 3(x=1)2(x=3)4(2x-1)=109 | | 3(x=1)2(x=3)4(2x-1)109 |